PURDUE UNIVERSITY FORT WAYNE Civil and Me Engineering

Department of Civil and Mechanical

Course	ME 33100 – System Dynamics
Type of Course	Required for ME program
Catalog Description	Introduction to mathematical modeling and response analysis of dynamic systems with mechanical, electrical, and fluid/thermal elements used in control systems. Concepts of analogous systems; transfer function and state space formulation; analysis in time- domain; analysis in frequency-domain; introduction to modern control theory.
Credits	3
Contact Hours	3
Prerequisite Courses	MA 36300 and ME 25100 with a minimum grade of C-
Corequisite Courses	None
Prerequisites by Topics	Dynamics, Calculus, Linear algebra
Textbook	Ogata, K., System Dynamics, Prentice Hall, current edition
Course Objectives	To introduce mathematical modeling and response analysis of dynamic systems with mechanical, electrical, and fluid/thermal elements used in control systems. Concepts of analogous systems; transfer function and state space formulation; analysis in time- domain; analysis in frequency-domain; introduction to modern control theory.
Course Outcomes	 Students who successfully complete this course will be able to: 1. Model linear dynamic systems through understanding and practicing of (1, 7): Fundamental physics laws Mechanics laws Simplifying/idealizing complex real world engineering problems Deriving equations of motion that govern the physical behavior of mechanical, electrical, thermal/fluid, and combined systems Predict and analyze the response of a system to a given input through understanding and practicing of (1, 7):

	 Proper mathematical tools to solve differential equations of motion Time-domain analysis Frequency domain analysis State-space analysis Analyze dynamic systems for controlled outputs through understanding and practicing of (1, 7): Application of modern computing tools Communicate effectively with other engineers through (3) Presentation of technical reports
Lecture Topics	Fundamentals of System DynamicsIntroduction to System Dynamics- Math review- Terms and DefinitionsThe Laplace Transform- Complex functions- Laplace transforms of elementary function- Final value theorem and initial value theorem- Inverse Laplace transform- Solving ODE's with Laplace transform techniqueModeling of Physical Systems and Equations of MotionMechanical SystemsElectrical Systems and Electromechanical SystemsFluid Systems and Thermal SystemsTransfer Function Approach to Modeling Dynamic SystemsState-Space Approach to Modeling Dynamic SystemsSystem Response AnalysisTime-Domain Analysis of Dynamic Systems- transient response analysis of 1st and 2nd order systemsFrequency-Domain Analysis of Dynamic Systems- steady state (Frequency) response analysis of 1st and 2nd ordersystems
Computer Usage	Medium
Laboratory Experience	None
Design Experience	Low
Coordinator	Bongsu Kang, Ph.D.
Date	12 October 2022